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Δu  (x, y) =1
n f(x, y), (x, y) ∈ Ω  =1 [−1,α] × [−1, 1]

u  (α, y) =1
n u  (α, y)2

n−1

Δu  (x, y) =2
n f(x, y), (x, y) ∈ Ω  =2 [β, 1] × [−1, 1]

u  (β, y) =2
n u  (β, y)1

n−1
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Now there's a choice in Robin parameter , and this
choice can be optimized

p

Optimization is done using Fourier analysis and finds
the best  for all Fourier modesp

If you have a specific Fourier mode in mind, you can
also pick the best  for just that modep
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Tangential BCs are also a popular choice, and give a
second parameter  to optimizeq
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But the best BCs are absorbing BCs, which are used in
perfectly matched layers

These are dense, and correspond to Schur
complements
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These are dense, and correspond to Schur
complements

This means they have about the same computation
time as  iterations, where  is the size of the

overlap
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Finding optimized BCs requires Fourier analysis on
each given problem

And the optimal BCs need Schur complements which
are expensive to calculate

We want cheap, black box BCs

To get them, we'll find them adaptively



Let's look at the differences between iterates for a
single sudomain
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We then perform what's known as static condensation
by noting that
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∥ ∥d 2
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We can apply a modified Gram-Schmidt process to the
vectors , making the vectors d w

Through this process, the vectors  get modified as
well, to the vectors 

 y

v
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Since , this is equivalent toV = E  W2

E  →2 E  I − WW2 ( ⊤)

We generate a low rank approximation of E  2

To make the optimized BCs, we subtract this from
T  2→1



The transmission conditions  and  now
change iteratively

T  2→1 T  1→2



Recall:
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They satisfy an implicit Galerkin condition



There's also the option to update the BCs at every
iteration



ADAPTIVE OPTIMIZED SCHWARZ
METHODS (AOSMS)
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Solve for  and  di
n
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Apply modified Gram-Schmidt to find  and  vi
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n

Update  using T  i→j
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The updates to  and  are low rankT  1→2
n T  2→1

n

In order to preserve any matrix factorizations, we can
use the Woodbury matrix identity to apply these low

rank updates

(A − VW ) =⊤ u  ,f

=u A  +−1f A V (I  −−1
k×k W A V ) W A⊤ −1 −1 ⊤



NUMERICAL EXPERIMENTS



Recall the sample problem:

Let's apply AOSMs to this problem

Δu(x, y) = f(x, y), (x, y) ∈ Ω = [−1, 1] × [−1, 1]

u(x, y) = h(x, y), (x, y) ∈ ∂Ω







u  (x, y, t) =t Δu(x, y, t), (x, y) ∈ Ω = [−1, 1] × [−1, 1],  t ∈ [0,T ]

u(x, y, 0) = u  (x, y), (x, y) ∈0 Ω,

u(x, y, t) = h(x, y), (x, y) ∈ ∂Ω,  t ∈ [0,T ]



 =
Δt

u  − u  n+1 n
Aun+1

(I − ΔtA)u  =n+1 un





Solve this using FEM so�ware

∇(α(x, y) ⋅ ∇u(x, y)) = f(x, y), (x, y) ∈ Ω = [−1, 1] × [−1, 1],

u(x, y) = h(x, y), (x, y) ∈ ∂Ω,
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CONCLUSIONS
AOSMs give GMRES convergence without GMRES
cost
Transmission conditions can be re-used, for restarts
and time steps

FUTURE WORK
Track down stability issues
Test out other choices of adaptive transmission
conditions




