
ADAPTIVE OPTIMIZED SCHWARZ
METHODS
Conor McCoid

Felix Kwok
Université Laval

SCHWARZ METHODS

Consider the following sample problem:

Δu(x, y) = f(x, y), (x, y) ∈ Ω = [−1, 1] × [−1, 1]

u(x, y) = h(x, y), (x, y) ∈ ∂Ω

Consider the following sample problem:

Δu(x, y) = f(x, y), (x, y) ∈ Ω = [−1, 1] × [−1, 1]

u(x, y) = h(x, y), (x, y) ∈ ∂Ω

We'll discretize this into

Consider the following sample problem:

Δu(x, y) = f(x, y), (x, y) ∈ Ω = [−1, 1] × [−1, 1]

u(x, y) = h(x, y), (x, y) ∈ ∂Ω

We'll discretize this into

A =u ​, A ∈f RN×N

If is very large, this can take a long time to find

A =u ​, A ∈f RN×N

N u

If is very large, this can take a long time to find

A =u ​, A ∈f RN×N

N u

Schwarz methods divide the domain into smaller
problems

Schwarz methods divide the domain into smaller
problems

Δu ​(x, y) =1
n f(x, y), (x, y) ∈ Ω ​ =1 [−1,α] × [−1, 1]

u ​(α, y) =1
n u ​(α, y)2

n−1

Δu ​(x, y) =2
n f(x, y), (x, y) ∈ Ω ​ =2 [β, 1] × [−1, 1]

u ​(β, y) =2
n u ​(β, y)1

n−1

Schwarz methods divide the domain into smaller
problems

Schwarz methods divide the domain into smaller
problems

Multiplicative Schwarz: solve one subdomain after the
other

Schwarz methods divide the domain into smaller
problems

Multiplicative Schwarz: solve one subdomain after the
other

Additive Schwarz: solve both subdomains at the same
time

Schwarz methods divide the domain into smaller
problems

​ ​ ​ ​ ​ ​ ​ ​ =
A ​11

A ​Γ1

A ​1Γ

A ​ΓΓ

A ​2Γ

A ​Γ2

A ​22

​u1

​uΓ

​u2

​ ​ ​

​ ​f1

​ ​fΓ

​ ​f2

Schwarz methods divide the domain into smaller
problems

​ ​ ​ =[A ​11

A ​Γ1

A ​1Γ

A + T ​ΓΓ 2→1
] [​u1

n+1

​u1Γ
n+1] ​ +[​ ​f1

​ ​fΓ
] ​[

−A ​ ​ + T ​ ​Γ2u2
n

2→1u2Γ
n]

​ ​ ​ =[A ​22

A ​Γ2

A ​2Γ

A + T ​ΓΓ 1→2
] [​u2

n+1

​u2Γ
n+1] ​ +[​ ​f2

​ ​fΓ
] ​[

−A ​ ​ + T ​ ​Γ1u1
n

1→2u1Γ
n]

OPTIMIZED SCHWARZ METHODS

Boundary conditions transmit information between
the two subdomains

Boundary conditions transmit information between
the two subdomains

We've used Dirichlet BCs

Boundary conditions transmit information between
the two subdomains

We've used Dirichlet BCs

We could use Robin BCs instead

We could use Robin BCs instead

We could use Robin BCs instead

Now there's a choice in Robin parameter , and this
choice can be optimized

p

Now there's a choice in Robin parameter , and this
choice can be optimized

p

Optimization is done using Fourier analysis and finds
the best for all Fourier modesp

Now there's a choice in Robin parameter , and this
choice can be optimized

p

Optimization is done using Fourier analysis and finds
the best for all Fourier modesp

If you have a specific Fourier mode in mind, you can
also pick the best for just that modep

Robin BCs aren't the only option for optimized BCs

Robin BCs aren't the only option for optimized BCs

Tangential BCs are also a popular choice, and give a
second parameter to optimizeq

​ −
∂x
∂u ​1

n

pu ​(0, y) +1
n q ​ =

∂y
∂u ​1

n

​ −
∂x

∂u ​2
n−1

pu ​(0, y) +2
n−1 q ​

∂y
∂u ​2

n

But the best BCs are absorbing BCs, which are used in
perfectly matched layers

These are dense, and correspond to Schur
complements

T ​ →2→1 S ​ =2→1 −A ​A ​A ​,Γ2 22
−1

2Γ

T ​ →1→2 S ​ =1→2 −A ​A ​A ​Γ1 11
−1

1Γ

These are dense, and correspond to Schur
complements

This means they have about the same computation
time as iterations, where is the size of the

overlap

T ​ →2→1 S ​ =2→1 −A ​A ​A ​,Γ2 22
−1

2Γ

T ​ →1→2 S ​ =1→2 −A ​A ​A ​Γ1 11
−1

1Γ

M M

ADAPTIVE TRANSMISSION CONDITIONS

Finding optimized BCs requires Fourier analysis on
each given problem

Finding optimized BCs requires Fourier analysis on
each given problem

And the optimal BCs need Schur complements which
are expensive to calculate

Finding optimized BCs requires Fourier analysis on
each given problem

And the optimal BCs need Schur complements which
are expensive to calculate

We want cheap, black box BCs

Finding optimized BCs requires Fourier analysis on
each given problem

And the optimal BCs need Schur complements which
are expensive to calculate

We want cheap, black box BCs

To get them, we'll find them adaptively

Let's look at the differences between iterates for a
single sudomain

​ ​ ​ − ​ =[A ​11

A ​Γ1

A ​1Γ

A ​ + T ​ΓΓ 2→1
] ([​u1

n+1

​u1Γ
n+1] [​u1

n

​u1Γ
n])

​ +[​ ​f1

​ ​fΓ
] ​ −[

−A ​ ​ + T ​ ​Γ2u2
n

2→1u2Γ
n] ​ + ​([​ ​f1

​ ​fΓ
] [

−A ​ ​ + T ​ ​Γ2u2
n−1

2→1u2Γ
n−1])

Let's look at the differences between iterates for a
single sudomain

​ ​ ​ =[A ​11

A ​Γ1

A ​1Γ

A ​ + T ​ΓΓ 2→1
] [​d1

n+1

​d1Γ
n+1]

​[
−A ​ ​ + T ​ ​Γ2d2

n
2→1d2Γ

n]

We then perform what's known as static condensation
by noting that

A ​ ​ =11d1
n+1 −A ​ ​Γ1d1Γ

n+1

This leads to

(A ​ +ΓΓ S ​ +1→2 T ​) ​ =2→1 d1Γ
n+1 (T ​ −2→1 S ​)2→1 d2Γ

n

This leads to

(A ​ +ΓΓ S ​ +1→2 T ​) ​ =2→1 d1Γ
n+1 (T ​ −2→1 S ​)2→1 d2Γ

n

​ =yn+1 E ​ ​ =2d2Γ
n −A ​ ​ +Γ2d2

n T ​ ​2→1d2Γ
n

At every other iteration, we're going to update

​ =yn+1 E ​ ​ =2d2Γ
n −A ​ ​ +Γ2d2

n T ​ ​2→1d2Γ
n

E ​2

At every other iteration, we're going to update

​ =yn+1 E ​ ​ =2d2Γ
n −A ​ ​ +Γ2d2

n T ​ ​2→1d2Γ
n

E ​2

E ​ →2 E ​ −2 ​

∥ ∥d 2

​yd⊤

With each iteration, there's a new pair of and

E ​ →2 E ​ −2 ​

∥ ∥d 2

​yd⊤

​y d

With each iteration, there's a new pair of and

E ​ →2 E ​ −2 ​

∥ ∥d 2

​yd⊤

​y d

We can apply a modified Gram-Schmidt process to the
vectors , making the vectors d w

With each iteration, there's a new pair of and

E ​ →2 E ​ −2 ​

∥ ∥d 2

​yd⊤

​y d

We can apply a modified Gram-Schmidt process to the
vectors , making the vectors d w

Through this process, the vectors get modified as
well, to the vectors

​y

v

E ​ →2 E ​ −2 VW⊤

E ​ →2 E ​ −2 VW⊤

Since , this is equivalent toV = E ​W2

E ​ →2 E ​ I − WW2 (⊤)

E ​ →2 E ​ −2 VW⊤

Since , this is equivalent toV = E ​W2

E ​ →2 E ​ I − WW2 (⊤)

We generate a low rank approximation of E ​2

E ​ →2 E ​ −2 VW⊤

Since , this is equivalent toV = E ​W2

E ​ →2 E ​ I − WW2 (⊤)

We generate a low rank approximation of E ​2

To make the optimized BCs, we subtract this from
T ​2→1

The transmission conditions and now
change iteratively

T ​2→1 T ​1→2

Recall:

The vectors lie in a Krylov subspace

(A ​ +ΓΓ S ​ +1→2 T ​) ​ =2→1 d1Γ
n+1 (T ​ −2→1 S ​)2→1 d2Γ

n

d

Recall:

The vectors lie in a Krylov subspace

(A ​ +ΓΓ S ​ +1→2 T ​) ​ =2→1 d1Γ
n+1 (T ​ −2→1 S ​)2→1 d2Γ

n

d

They satisfy an implicit Galerkin condition

There's also the option to update the BCs at every
iteration

ADAPTIVE OPTIMIZED SCHWARZ
METHODS (AOSMS)

1. INITIAL GUESSES

1. INITIAL GUESSES

Make initial choices of , and ​u1Γ
0 T ​1→2

1 T ​2→1
1

1. INITIAL GUESSES

Make initial choices of , and ​u1Γ
0 T ​1→2

1 T ​2→1
1

Find ​ =u1
0 A ​ ​ ​ − A ​ ​11

−1 (f1 1Γu1Γ
0)

1. INITIAL GUESSES

Make initial choices of , and ​u1Γ
0 T ​1→2

1 T ​2→1
1

Find ​ =u1
0 A ​ ​ ​ − A ​ ​11

−1 (f1 1Γu1Γ
0)

Solve

​ ​ ​ =[A ​22

A ​Γ2

A ​2Γ

A ​ + T ​ΓΓ 1→2
1] [​u2

1

​u2Γ
1] ​

+[​ ​f2

​ ​fΓ
] ​[

−A ​ ​ + T ​ ​Γ1u1
0

1→2
1 u1Γ

0]

2. SEED KRYLOV SUBSPACE

2. SEED KRYLOV SUBSPACE

Solve

​ ​ ​ =[A ​11

A ​Γ1

A ​1Γ

A ​ + T ​ΓΓ 2→1
1] [​u1

2

​u1Γ
2] ​ +[​ ​f1

​ ​fΓ
] ​[

−A ​ ​ + T ​ ​Γ2u2
1

2→1
1 u2Γ

1]

2. SEED KRYLOV SUBSPACE

Solve

​ ​ ​ =[A ​11

A ​Γ1

A ​1Γ

A ​ + T ​ΓΓ 2→1
1] [​u1

2

​u1Γ
2] ​ +[​ ​f1

​ ​fΓ
] ​[

−A ​ ​ + T ​ ​Γ2u2
1

2→1
1 u2Γ

1]

Calculate and ​ =d1Γ
2

​ −u1Γ
2

​u1Γ
0

​ =d1
2

​ −u1
2

​u1
0

2. SEED KRYLOV SUBSPACE

Calculate and ​ =d1Γ
2

​ −u1Γ
2

​u1Γ
0

​ =d1
2

​ −u1
2

​u1
0

2. SEED KRYLOV SUBSPACE

Calculate and ​ =d1Γ
2

​ −u1Γ
2

​u1Γ
0

​ =d1
2

​ −u1
2

​u1
0

Normalize using such that and
calculate

​d1Γ
2 α ​1

2
​ =w1

2 α ​ ​1
2d1Γ

2

​ =v1
2 α ​ −A ​ ​ + T ​ ​1

2 (Γ1d1
2

1→2
1 d1Γ

2)

2. SEED KRYLOV SUBSPACE

Calculate and ​ =d1Γ
2

​ −u1Γ
2

​u1Γ
0

​ =d1
2

​ −u1
2

​u1
0

Normalize using such that and
calculate

​d1Γ
2 α ​1

2
​ =w1

2 α ​ ​1
2d1Γ

2

​ =v1
2 α ​ −A ​ ​ + T ​ ​1

2 (Γ1d1
2

1→2
1 d1Γ

2)

Update :T ​1→2
1

T ​ =1→2
2 T ​ +1→2

1 ΔT ​ =1→2
2 T ​ −1→2

1
​ ​v1

2 (w1
2)

⊤

2. SEED KRYLOV SUBSPACE

Solve

​ ​ ​[A ​22

A ​Γ2

A ​2Γ

A ​ + T ​ΓΓ 1→2
2] [​d2

3

​d2Γ
3]

= ​[
−A ​ ​ + T − ΔT ​ ​ − ​Γ1d1

2
1→2
2 d1Γ

2
1→2
2 (u2Γ

1 u1Γ
0)

]

2. SEED KRYLOV SUBSPACE

Solve

​ ​ ​[A ​22

A ​Γ2

A ​2Γ

A ​ + T ​ΓΓ 1→2
2] [​d2

3

​d2Γ
3]

= ⟨ ​, ​ −w1
2 u2Γ

1
​⟩ ​u1Γ

0 [
​v1

2]

2. SEED KRYLOV SUBSPACE

Normalize using such that and
calculate

Update :

​d2Γ
3 α ​2

3
​ =w2

3 α ​ ​2
3d2Γ

3

​ =v2
3 α ​ −A ​ ​ + T ​ ​2

3 (Γ2d2
3

2→1
1 d2Γ

3)

T ​2→1
1

T =2→1
3 T ​ −2→1

1
​ ​v2

3 (w2
3)

⊤

3. ITERATE

3. ITERATE

Solve for and ​di
n

​diΓ
n

3. ITERATE

Solve for and ​di
n

​diΓ
n

Apply modified Gram-Schmidt to find and ​vi
n

​wi
n

3. ITERATE

Solve for and ​di
n

​diΓ
n

Apply modified Gram-Schmidt to find and ​vi
n

​wi
n

Update using T ​i→j
n

​ ​vi
n (wi

n)⊤

WOODBURY MATRIX IDENTITY

The updates to and are low rankT ​1→2
n T ​2→1

n

The updates to and are low rankT ​1→2
n T ​2→1

n

In order to preserve any matrix factorizations, we can
use the Woodbury matrix identity to apply these low

rank updates

The updates to and are low rankT ​1→2
n T ​2→1

n

In order to preserve any matrix factorizations, we can
use the Woodbury matrix identity to apply these low

rank updates

(A − VW) =⊤ u ​,f

=u A ​ +−1f A V (I ​ −−1
k×k W A V) W A⊤ −1 −1 ⊤

NUMERICAL EXPERIMENTS

Recall the sample problem:

Let's apply AOSMs to this problem

Δu(x, y) = f(x, y), (x, y) ∈ Ω = [−1, 1] × [−1, 1]

u(x, y) = h(x, y), (x, y) ∈ ∂Ω

u ​(x, y, t) =t Δu(x, y, t), (x, y) ∈ Ω = [−1, 1] × [−1, 1], t ∈ [0,T]

u(x, y, 0) = u ​(x, y), (x, y) ∈0 Ω,

u(x, y, t) = h(x, y), (x, y) ∈ ∂Ω, t ∈ [0,T]

​ =
Δt

u ​ − u ​n+1 n
Aun+1

(I − ΔtA)u ​ =n+1 un

Solve this using FEM software

∇(α(x, y) ⋅ ∇u(x, y)) = f(x, y), (x, y) ∈ Ω = [−1, 1] × [−1, 1],

u(x, y) = h(x, y), (x, y) ∈ ∂Ω,

CONCLUSIONS

CONCLUSIONS
AOSMs give GMRES convergence without GMRES
cost

CONCLUSIONS
AOSMs give GMRES convergence without GMRES
cost
Transmission conditions can be re-used, for restarts
and time steps

CONCLUSIONS
AOSMs give GMRES convergence without GMRES
cost
Transmission conditions can be re-used, for restarts
and time steps

FUTURE WORK

CONCLUSIONS
AOSMs give GMRES convergence without GMRES
cost
Transmission conditions can be re-used, for restarts
and time steps

FUTURE WORK
Track down stability issues

CONCLUSIONS
AOSMs give GMRES convergence without GMRES
cost
Transmission conditions can be re-used, for restarts
and time steps

FUTURE WORK
Track down stability issues
Test out other choices of adaptive transmission
conditions

