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Aut(z,y) = flz,y), (z,y) €2 =|-1,a] x|—1,1]
ui(e,y) = uy (@, y)
Auy(z,y) = f(z,y), (z,y) € Q2 =6,1] x [-1,1]

uy(8,y) = ui " (B,y)
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Schwarz methods divide the domain into smaller
problems

Multiplicative Schwarz: solve one subdomain after the
other

Additive Schwarz: solve both subdomains at the same
time



Schwarz methods divide the domain into smaller
problems
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Schwarz methods divide the domain into smaller
problems
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OPTIMIZED SCHWARZ METHODS
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Now there's a choice in Robin parameter p, and this
choice can be optimized
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Now there's a choice in Robin parameter p, and this
choice can be optimized

Optimization is done using Fourier analysis and finds
the best p for all Fourier modes

If you have a specific Fourier mode in mind, you can
also pick the best p for just that mode



Robin BCs aren't the only option for optimized BCs



Robin BCs aren't the only option for optimized BCs

Tangential BCs are also a popular choice, and give a
second parameter g to optimize
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But the best BCs are absorbing BCs, which are used in
perfectly matched layers

These are dense, and correspond to Schur
complements

1
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These are dense, and correspond to Schur
complements

Ty 1 — Soy1 = —Ara AL, Aor,
Tio — S0 = —Ar A Air

This means they have about the same computation
time as M iterations, where M is the size of the
overlap



ADAPTIVE TRANSMISSION CONDITIONS
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Finding optimized BCs requires Fourier analysis on
each given problem

And the optimal BCs need Schur complements which
are expensive to calculate

We want cheap, black box BCs
To get them, we'll find them adaptively
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Let's look at the differences between iterates for a
single sudomain
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Let's look at the differences between iterates for a
single sudomain
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We then perform what's known as static condensation
by noting that
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This leads to
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(Arr + S152 + T2%1)J?Fl = (Th1 — S251)ds
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At every other iteration, we're going to update F»
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At every other iteration, we're going to update F»
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We can apply a modified Gram-Schmidt process to the
vectors d, making the vectors w



With each iteration, there's a new pair of y and d

We can apply a modified Gram-Schmidt process to the
vectors d, making the vectors w

Through this process, the vectors y get modified as
well, to the vectors U
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E2 — Eg — VWT
Since V. = E» W, this is equivalent to
Ey — E (I-WW')

We generate a low rank approximation of Fs

To make the optimized BCs, we subtract this from

T2%1



The transmission conditions I5_,1 and T7_.9 now
change iteratively
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Recall:
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The vectors d lie in a Krylov subspace



Recall:
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(Arr + S1.2 + T2%1)dnle (To1 — So1)dy

The vectors d lie in a Krylov subspace

They satisfy an implicit Galerkin condition



There's also the option to update the BCs at every
Iteration
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ADAPTIVE OPTIMIZED SCHWARZ
METHODS (AOSMS)



1. INITIAL GUESSES
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1. INITIAL GUESSES

Make initial choices of ulr, T} .,and Ty .,
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2. SEED KRYLOV SUBSPACE
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2. SEED KRYLOV SUBSPACE

Solve
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2. SEED KRYLOV SUBSPACE

72 =2 = 72 _ 22 =0
Calculate djp = Ujp — Ujp and d] = U7 — U3

o 2 e 2 =2 29D
Normalize dip using o such that wi = ajdj and

calculate
Ul = o (_AFICE T T11%2j%1“)
Update T} o:
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2. SEED KRYLOV SUBSPACE

Solve
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2. SEED KRYLOV SUBSPACE
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2. SEED KRYLOV SUBSPACE

Normalize d‘;’F using ag’ such that w;” — a‘;’dgr and

calculate
5 = o (—Ards + T, &)
Update T% . ;:
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3. ITERATE
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3. ITERATE
Solve for d}' and d}~

Apply modified Gram-Schmidt to find U}* and W}’

Update 3", ; using v;" (QE?)T



WOODBURY MATRIX IDENTITY



The updatesto 1 .5 and 15" ¢ are low rank
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In order to preserve any matrix factorizations, we can
use the Woodbury matrix identity to apply these low
rank updates



The updatesto 1 .5 and 15" ¢ are low rank

In order to preserve any matrix factorlzatlons, we can
use the Woodbury matrix identity to apply these low
rank updates
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NUMERICAL EXPERIMENTS



Recall the sample problem:
Au(z,y) = f(z,y), (z,y) € Q=[-1,1] x [-1,1]

u(z,y) = h(z,y), (z,y) € 0

Let's apply AOSMs to this problem
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2-norm of error
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ut(waya t) — Au(xayat)a (way) c )= [_17 1] X [_17 1]7 t € [OaT]

u(m,y, O) — uO(way)a (may) < Qa

u(z,y,t) = h(z,y), (z,y) €0Q,tec|0,T]



Unp+1 — Up
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— Aun+1
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V(a(z,y) - Vu(z,y)) = f(z,y), (z,y) € Q=|-1,1] x |-1,1],

u(xay) — h(CE,y), (CB,y) € 0},

Solve this using FEM software
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2-norm of error
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CONCLUSIONS

AOSMs give GMRES convergence without GMRES

cost
Transmission conditions can be re-used, for restarts

and time steps

FUTURE WORK

Track down stability issues
Test out other choices of adaptive transmission

conditions






