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time
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Boundary conditions transmit information between
the two subdomains



Boundary conditions transmit information between
the two subdomains

We've used Dirichlet BCs



Boundary conditions transmit information between
the two subdomains

We've used Dirichlet BCs

We could use Robin BCs instead



We could use Robin BCs instead



We could use Robin BCs instead



Now there's a choice in Robin parameter , and this
choice can be optimized

p



Now there's a choice in Robin parameter , and this
choice can be optimized

p

Optimization is done using Fourier analysis and finds
the best  for all Fourier modesp



Now there's a choice in Robin parameter , and this
choice can be optimized

p

Optimization is done using Fourier analysis and finds
the best  for all Fourier modesp

If you have a specific Fourier mode in mind, you can
also pick the best  for just that modep
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Tangential BCs are also a popular choice, and give a
second parameter  to optimizeq
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But the best BCs are absorbing BCs, which are used in
perfectly matched layers

These are dense, and correspond to Schur
complements

T ​ →2→1 S ​ =2→1 −A ​A ​A ​,Γ2 22
−1

2Γ

T ​ →1→2 S ​ =1→2 −A ​A ​A ​Γ1 11
−1

1Γ



These are dense, and correspond to Schur
complements

This means they have about the same computation
time as  iterations, where  is the size of the

overlap
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Finding optimized BCs requires Fourier analysis on
each given problem

And the optimal BCs need Schur complements which
are expensive to calculate

We want cheap, black box BCs

To get them, we'll find them adaptively



Let's look at the differences between iterates for a
single sudomain

​ ​ ​ − ​ =[A ​11

A ​Γ1

A ​1Γ

A ​ + T ​ΓΓ 2→1
] ([ ​u1

n+1

​u1Γ
n+1] [ ​u1

n

​u1Γ
n ])

​ +[ ​ ​f1

​ ​fΓ
] ​ −[  

−A ​ ​ + T ​ ​Γ2u2
n

2→1u2Γ
n ] ​ + ​([ ​ ​f1

​ ​fΓ
] [  

−A ​ ​ + T ​ ​Γ2u2
n−1

2→1u2Γ
n−1])



Let's look at the differences between iterates for a
single sudomain

​ ​ ​ =[A ​11

A ​Γ1

A ​1Γ

A ​ + T ​ΓΓ 2→1
] [ ​d1

n+1

​d1Γ
n+1]

​[  
−A ​ ​ + T ​ ​Γ2d2

n
2→1d2Γ

n ]



We then perform what's known as static condensation
by noting that
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With each iteration, there's a new pair of  and 

E ​ →2 E ​ −2 ​

∥ ∥d 2

​yd⊤

​y d

We can apply a modified Gram-Schmidt process to the
vectors , making the vectors d w

Through this process, the vectors  get modified as
well, to the vectors 

​y

v



E ​ →2 E ​ −2 VW⊤



E ​ →2 E ​ −2 VW⊤

Since , this is equivalent toV = E ​W2

E ​ →2 E ​ I − WW2 ( ⊤)



E ​ →2 E ​ −2 VW⊤

Since , this is equivalent toV = E ​W2

E ​ →2 E ​ I − WW2 ( ⊤)

We generate a low rank approximation of E ​2



E ​ →2 E ​ −2 VW⊤

Since , this is equivalent toV = E ​W2

E ​ →2 E ​ I − WW2 ( ⊤)

We generate a low rank approximation of E ​2

To make the optimized BCs, we subtract this from
T ​2→1



The transmission conditions  and  now
change iteratively

T ​2→1 T ​1→2
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Recall:

The vectors  lie in a Krylov subspace

(A ​ +ΓΓ S ​ +1→2 T ​) ​ =2→1 d1Γ
n+1 (T ​ −2→1 S ​)2→1 d2Γ

n

d

They satisfy an implicit Galerkin condition



There's also the option to update the BCs at every
iteration



ADAPTIVE OPTIMIZED SCHWARZ
METHODS (AOSMS)
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Solve for  and ​di
n
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The updates to  and  are low rankT ​1→2
n T ​2→1

n

In order to preserve any matrix factorizations, we can
use the Woodbury matrix identity to apply these low

rank updates

(A − VW ) =⊤ u ​,f

=u A ​ +−1f A V (I ​ −−1
k×k W A V ) W A⊤ −1 −1 ⊤



NUMERICAL EXPERIMENTS



Recall the sample problem:

Let's apply AOSMs to this problem

Δu(x, y) = f(x, y), (x, y) ∈ Ω = [−1, 1] × [−1, 1]

u(x, y) = h(x, y), (x, y) ∈ ∂Ω







u ​(x, y, t) =t Δu(x, y, t), (x, y) ∈ Ω = [−1, 1] × [−1, 1],  t ∈ [0,T ]

u(x, y, 0) = u ​(x, y), (x, y) ∈0 Ω,

u(x, y, t) = h(x, y), (x, y) ∈ ∂Ω,  t ∈ [0,T ]



​ =
Δt

u ​ − u ​n+1 n
Aun+1

(I − ΔtA)u ​ =n+1 un





Solve this using FEM software

∇(α(x, y) ⋅ ∇u(x, y)) = f(x, y), (x, y) ∈ Ω = [−1, 1] × [−1, 1],

u(x, y) = h(x, y), (x, y) ∈ ∂Ω,
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CONCLUSIONS
AOSMs give GMRES convergence without GMRES
cost
Transmission conditions can be re-used, for restarts
and time steps

FUTURE WORK
Track down stability issues
Test out other choices of adaptive transmission
conditions




